Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eye Vis (Lond) ; 10(1): 44, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37907982

ABSTRACT

BACKGROUND: Recent studies have indicated a strong correlation between endoplasmic reticulum (ER) stress and myopia and that eyedrops containing the ER stress inducer tunicamycin (Tm) can induce myopic changes in C57BL/6 J mice. Therefore, this study aimed to create a new myopia model using Tm eyedrops and to explore the mechanism of ER stress-mediated myopia development. METHODS: Three-week-old C57BL/6 J mice were treated with different concentrations (0, 25, 50, and 100 µg/mL) and/or number of applications (zero, one, three, and seven) of Tm eyedrops. Refraction and axial length (AL) were measured before and one week after Tm treatment. Scleral collagen alterations were evaluated under polarised light after picrosirius red staining. ER stress-related indicators, such as the expression of collagen I and cleaved collagen were detected using Western blotting. RESULTS: Compared with the control group, mice administered eyedrops with 50 µg/mL Tm only once showed the greatest myopic shifts in refraction and AL elongation and reduced scleral expression of collagen I. Picrosirius red staining showed a lower percentage of bundled collagen in the Tm group. Expression of ER-stress indicators increased in the Tm groups. Furthermore, optimised administration of Tm induced matrix metalloproteinase-2 (MMP2) expression in the sclera, which plays a major role in collagen degradation. CONCLUSIONS: We have demonstrated that ER stress in the sclera is involved in myopia progression. Tm eyedrops induced myopic changes, loosening of the scleral collagen and decreased expression of collagen I. This process may be associated with ER stress in the sclera, which upregulates the expression of MMP2 leading to collagen degradation.

2.
Front Med (Lausanne) ; 10: 1255121, 2023.
Article in English | MEDLINE | ID: mdl-37746069

ABSTRACT

Background: Ocular axial elongation is one of the features of myopia progression. Endoplasmic reticulum (ER) stress-associated scleral remodeling plays an important role in ocular axial elongation. Bisphenol A (BPA) is one of the most common environmental pollutants and is known to affect various human organs through ER stress. However, whether BPA exerts an effect on scleral remodeling remains unknown. The purpose of this study was to determine the effect of BPA on the development of myopia and scleral ER stress. Methods: BPA was administered by intraperitoneal injection. 4-PBA was administered as an endoplasmic reticulum stress inhibitor by eye drops. Refraction and axial length were measured by refractometer and SD-OCT system. Western blot was performed to detect the expression level of ER stress-related proteins. Results: BPA-administered mice exhibit axial elongation and myopic refractive shift with endoplasmic reticulum stress in the sclera. BPA administration activated scleral PERK and ATF6 pathways, and 4-PBA eye drops attenuated ER stress response and suppressed myopia progression. Conclusion: BPA controlled axial elongation during myopia development in a mouse model by inducing scleral ER stress and activation of the PERK/ATF6 pathway. 4-PBA eye drops as ER stress inhibitor suppressed BPA-induced myopia development.

3.
Int Immunopharmacol ; 113(Pt A): 109306, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36252473

ABSTRACT

Respiratory syncytial virus (RSV) infection induces the activation of CD4+ T cells. However, the underlying mechanism of CD4+T-cell activation induced by RSV infection is not fully understood. In the present study, we found that depletion of CD4+ T cells can obviously reduce airway inflammation caused by RSV infection. Meanwhile, adoptive transfer of group 2 innate lymphocytes (ILC2s) significantly enhanced the number of CD4+ T cells and promoted their differentiation to Th2 in lung. In fact, RSV infection increased the expression of major histocompatibility complex-II (MHC II) molecules on the surface of pulmonary ILC2s. In vitro coculture experiments showed that ILC2s may act as promoters to promote the expansion and differentiation of RSV-infected CD4+ T cells. However, blocking the interaction between CD4+ T cells and ILC2s with anti-MHC-II mAbs significantly reduced CD4+T-cell expansion. These results suggest that pulmonary ILC2s may function as antigen-presenting cells to induce the activation of CD4+ T cells through the MHC II pathway during RSV infection.


Subject(s)
Respiratory Syncytial Virus Infections , Animals , Mice , CD4-Positive T-Lymphocytes , Histocompatibility Antigens Class II , Immunity, Innate , Lung , Major Histocompatibility Complex , Mice, Inbred BALB C , T-Lymphocytes
4.
J Neurol ; 269(10): 5272-5282, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35779086

ABSTRACT

Paraneoplastic syndrome is a group of clinical symptoms that occur in the state of systemic malignant tumors. Paraneoplastic syndrome of the nervous system can affect any part of the central and peripheral nervous system and may also affect the eyes. In neuroophthalmology, paraneoplastic syndrome has a variety of manifestations that can affect both the afferent and efferent visual systems. The afferent system may involve the optic nerve, retina and uvea; the efferent system may involve eye movement, neuromuscular joints or involuntary eye movements and pupil abnormalities and may also have other neurological symptoms outside the visual system. This article discusses the clinical manifestations, pathological mechanisms, detection methods and treatment methods of paraneoplastic syndrome in neuroophthalmology. The performance of paraneoplastic syndrome is diverse, the diagnosis is difficult, and the treatment should be considered systematically. Differential diagnosis, optimal evaluation and management of these manifestations is not only the key to treatment but also a challenge.


Subject(s)
Lambert-Eaton Myasthenic Syndrome , Neoplasms , Paraneoplastic Syndromes , Humans , Immunotherapy , Lambert-Eaton Myasthenic Syndrome/pathology , Paraneoplastic Syndromes/complications , Paraneoplastic Syndromes/diagnosis
5.
Quant Imaging Med Surg ; 12(3): 2106-2128, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35284278

ABSTRACT

Glaucoma is a group of eye diseases characterized by progressive degeneration of the optic nerve head and retinal ganglion cells and corresponding visual field defects. In recent years, mounting evidence has shown that glaucoma-related damage may not be limited to the degeneration of retinal ganglion cells or the optic nerve head. The entire structure of the visual pathway may be degraded, and the degradation may even extend to some non-visual brain regions. We know that advanced morphological, functional, and metabolic magnetic resonance technologies provide a means to observe quantitatively and in real time the state of brain function. Advanced magnetic resonance imaging (MRI) techniques provide additional diagnostic markers for glaucoma, which are related to known potential histopathological changes. Many researchers in China and globally have conducted clinical and imaging studies on glaucoma. However, they are scattered, and we still need to systematically sort out the advanced MRI related to glaucoma. We reviewed literature published in any language and included all studies that were able to be translated into English from 1 January 1980 to 31 July 2021. Our literature search focused on emerging magnetic resonance neuroimaging techniques for the study of glaucoma. We then identified each functional area of the brain of glaucoma patients through the integration of anatomy, image, and function. The aim was to provide more information about the occurrence and development of glaucoma diseases. From the perspective of neuroimaging, our study provides a research basis to explain the possible mechanism of the occurrence and development of glaucoma. This knowledge gained from these techniques enables us to more clearly observe the damage glaucoma causes to the whole visual pathway. Our study provides new insights into glaucoma-induced changes to the brain. Our findings may enable the progress of these changes to be analyzed and inspire new neuroprotective therapeutic strategies for patients with glaucoma in the future.

6.
Int Immunopharmacol ; 99: 107924, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34217145

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are reportedly associated with the progression of many tumors. However, the role of ILC2s in triple-negative breast cancer (TNBC) lung metastasis remains unclear. In this study, we found that ILC2s may be a key element in the process of TNBC lung metastasis since the adoptive transfer of pulmonary ILC2s increased the numbers of metastatic lung nodules and reduced the survival of tumor-bearing mice. ILC2-promoted 4 T1 lung metastasis appears to be related to ILC2-derived IL-13. An expansion of IL-13-producing ILC2s and an elevated expression of IL-13 mRNA in pulmonary ILC2s were determined in tumor-bearing mice, in parallel with an increase in the levels of local IL-13 by ILC2 transfer. The neutralization of IL-13 reduced the increased pulmonary metastatic nodules and improved the decreased survival rate caused by ILC2-adoptive transfer. Interestingly, adoptive transfer of ILC2s elevated IL-13Ra1 expression in myeloid-derived suppressor cells (MDSCs). Treatment of ILC2-transferred tumor-bearing mice with anti-IL-13 antibodies significantly diminished the number of pulmonary MDSCs and inhibited MDSC activation. Moreover, when pulmonary MDSCs were cocultured with ILC2s in the presence of an anti-IL-13 mAb, the number and activation of MDSCs were reduced. Depletion of MDSCs may promote the proliferation of CD4+ T cells and CD8+ T cells, but reduce the expansion of regulatory T cells (Tregs) in the lungs of ILC2-transferred tumor-bearing mice. Our results suggest that pulmonary ILC2s may promote TNBC lung metastasis via the ILC2-derived IL-13-activated MDSC pathway.


Subject(s)
Interleukin-13/immunology , Lung Neoplasms/immunology , Lymphocytes/immunology , Mammary Neoplasms, Experimental/immunology , Myeloid-Derived Suppressor Cells/immunology , Triple Negative Breast Neoplasms/immunology , Adoptive Transfer , Animals , Cell Line, Tumor , Coculture Techniques , Cytokines/genetics , Cytokines/immunology , Female , Immunity, Innate , Lung/immunology , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/pathology , Mice, Inbred BALB C , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...